

FEB. 20, 2024 SOLUTIONS TO HYDRAULIC ENGINEERING PROBLEM SET
2.1 The cross-section is a trapezoid, so we can use the formula for the area of a trapezoid to solve: $A=1 / 2\left(b_{1}+b_{2}\right) h$, where b_{1} and b_{2} are the lengths of the bases, and h is the height of the trapezoid. So, $A=$ $1 / 2(9+20) \times 3.5=50.75 \mathrm{ft}^{2}$. Alternatively, we can divide the trapezoidal cross-section into two triangles and a rectangle, as shown. Using $A=1 / 2 b h$ for the area of a triangle and $A=I W$ for the area of a rectangle, we find that the area of the trapezoid is $A=(1 / 2 \times 4 \times$ $3.5)+(9 \times 3.5)+(1 / 2 \times 7 \times 3.5)=7+31.5+12.25$
 $=50.75 \mathrm{ft}^{2}$.
2.2 We're told flow rate is equal to the cross-sectional area of the canal multiplied by the speed of the water. Thus, the flow rate is $50.75 \times 1.5=76.125 \mathrm{cfs}$. Rounded to the nearest whole number, we get 76 cfs.
2.3 Given that the hydraulic radius is 2.29 ft , we can use Manning's Equation to find that the estimated flow rate of the canal is $1.571 \times 50.75 \times 2.29^{2 / 3} \approx 138.5 \mathbf{c f s}$, to the nearest tenth.

