MATHCOUNTS[®]

2024 STATE COMPETITION Team Round Problems 1–10

School	
Chapter	
Team Members	, Captain

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This section of the competition consists of 10 problems which the team has 20 minutes to complete. Team members may work together in any way to solve the problems. Team members may talk to each other during this section of the competition. This round assumes the use of calculators, and calculations also may be done on scratch paper, but no other aids are allowed. All answers must be complete, legible and simplified to lowest terms. The team captain must record the team's official answers on his/her own competition booklet, which is the only booklet that will be scored. If the team completes the problems before time is called, use the remaining time to check your answers.

Total Correct	Scorer's Initials			
TITLE SF	PONSORS			
RTX	Department of Defense DoDSTEM Science · Technology · Engineering · Mathematics			
LEAD SPONSORS				
BAE SYSTEMS	NORTHROP GRUMMAN FOUNDATION			
National Society of Professional Engineers • 3M	Sponsors Texas Instruments, Inc. Art of Problem Solving			
FOUNDING SPONSORS: National Society of Professional Engineers,	National Council of Teachers of Mathematics and CNA Insurance			
Copyright MATHCOUNTS In	ac 2024 All rights reserved			

1	miles	Evin's factor continue on travel $10\frac{17}{2}$ inches an example At this rate have
1.		Erin's fastest centipede can travel 19 $\frac{1}{25}$ inches per second. At this rate, now
		many miles can Erin's fastest centipede travel in 2 nours? Express your answer
		as a decimal to the nearest hundredth.
2.	cents	Beatrix is buying carrots to feed the rabbits in her garden. For every five carrots
		for 15 cents. If Beatrix buys 12 carrots from Carrots 'R' Us for a
		total of \$2.60, what is the regular price of a carrot, in cents?
		Exite
3.	terms	Aditva writes down some of his favorite numbers. Every number on his list is a
		prime number, and no two numbers on his list share any digits in common. What
		is the greatest possible number of terms in Aditya's list?
4.	points	In the exciting new game of Hyperfootball, two teams compete against each
		smackdown or a shutdown worth 6, 10 and 15 points, respectively. What is the
		greatest integer score that a team cannot have during a game of Hyperfootball?
5.	cm	Square ABCD has side length 14 cm, and point P lies in its interior so that
		AP = 15 cm and $BP = 13$ cm. What is CP? Express your answer in simplest radical form

Copyright MATHCOUNTS, Inc. 2023. All rights reserved. 2024 State Team Round

6	A geometric sequence has 20 terms. The product of every fourth term, starting with the fourth term, is 32. The product of every fifth term, starting with the fifth term, is 4096. The product of every third term, starting with the third term, can be written as 2^k where k is an integer. What is the value of k?
7	The arithmetic mean of a set of distinct prime numbers is 31. What is the greatest prime number that can be in this set?
8	Rosencrantz has a bag containing ten fair coins, nine of which have a heads face and a tails face, but one of which has two heads faces. Guildenstern randomly draws a coin from the bag then flips it ten times and notices that it comes up heads each time. What is the probability that the coin he drew is the one with two heads faces? Express your answer as a common fraction.
9integers	How many positive integers less than or equal to 1000 can be written as the sum of an even number of distinct powers of 3?
10. <u>cm</u> ²	In concave hexagon ABCDEF, shown here, segments AB and EF are parallel as are segments BC and DE, and $m \angle A + m \angle B + m \angle C = 270$ degrees. What is the area of hexagon ABCDEF? $F = \frac{9}{16} + \frac{16}{12} + 1$