MATHCOUNTS®

Order of Operations & Defining New Rules

Try these problems before watching the lesson.

- 1. What is the value of $4 \times (50 + 7)$?
- 2. What common fraction is equivalent to $1\frac{1}{2} + \frac{6}{5} 0.25$?
- 3. What is $0 \cdot 1 + \frac{0}{1} + 0^1 + 1^{\circ}$?
- 4. What is the value of $(10 5)^2 + 12 \div 4$?
- 5. What is the value of $9(\frac{1}{3} + 2 \frac{2}{3})?$
- 6. What is the value of $100 \frac{10}{0.1}$?

Take a look at the following problems and follow along as they are explained in the video.

- 7. Define the operation $a \# b = a^2 + b$. What is the value of (2 # 1) # (2 # 1)?
- 8. If $a \star b = a + b 1$, what is the value of $5 \star 5 \star 5 \star 5 \star 5$?
- 9. If $a \blacklozenge b$ is defined as $a \cdot b + 3$, what is the absolute difference between $(10 \blacklozenge 11) \blacklozenge 12$ and $10 \blacklozenge (11 \blacklozenge 12)$?

Piece It Together

Use the skills you practiced in the warm-up and strategies from the video to solve the following problems.

What is the value of $(x + \frac{1}{x})^2$, if $x = \sqrt{\frac{5}{8}}$? Express your answer as a common fraction. 10.

If $x \bigtriangleup y = x + y - |x - y|$, what is the value of $(3 \bigtriangleup 4) - (2 \bigtriangleup 1)$? 11.

- If a $\# b = \frac{ab}{a+b}$ and a # 4 = 3, what is the value of a? 12.
- Joanna forms an arithmetic expression using each of $\frac{1}{10}$, $3\frac{1}{2}$ and $2\frac{4}{5}$ exactly once and using each 13. of the two operators + and ÷ exactly once with as many sets of parentheses as she wishes. What is the absolute difference between the greatest and least possible values of Joanna's expression? Express your answer as a mixed number.

To extend your understanding and have a little fun with math, try the following activities.

Create a rule for a \odot b that always equals 1 no matter what two numbers are used for a and b. Get creative! Make more than one! See which of your friends came up with the most complex but successful rule!

Come up with a rule that is challenging to solve. Switch with your friends and see if you can stump them! Note: agree with your friends on a maximum number of steps or operators.